

Exploring the role of trace gas atmospheric rivers in extreme air pollution events: Case studies illustrated using TROPESS-CrIS products and TCR-2 reanalysis

Jet Propulsion Laboratory
California Institute of Technology, Pasadena, CA, USA

Motivations

- Air quality in a region is influenced by both local emissions and long-range transport
- How can we characterize the impact of long - range transport on local air quality?
- Introduce new framework -Trace Gas Atmospheric River framework

Vertically integrated (surface-650 hPa) CO data from Tropospheric Chemical Reanalysis version 2

Time: 2017-02-17 01:00:00

TROPESS: Tropospheric Chemical Reanalysis version-2 (TCR-2)

MOMO-Chem (Multi-model Multi-constituent Chemical) Data Assimilation System

Integrated gas transport (IGT) and Trace Gas Atmospheric River (TGAR) result from (TCR-2)

The 3D fields from the chemical reanalysis allow us to look at the integrated gas transport for a given species.

IGT calculation approach

CO TGARs
Time=2007/Jan/0

Introduce the concept of trace gas atmospheric river (TGAR) (Rai et. al. in prep)

- Adapted and optimized from atmospheric River <u>Guan and</u> <u>Waliser et.al. (2015)</u>
- Integrated gas transport can be used to identify "Trace Gas Atmospheric River" events
- Provide climatology, seasonality, long-term change, and characteristics of TGAR

Did this long - range transport event affect air quality in LA?

Ozone and its precursors: CO and PAN

Results – Influence of lower troposphere transport

Over LA, lower tropospheric integrated gas transport (IGT) increased CO by 20 ppb and O₃ by 6 ppb for simultaneously during TGAR event, suggesting the TGAR impact on air quality

Additional data

- 1) Satellite data (TROPESS SNPP CrIS)
 - a) Reanalysis stream (global) to provide the spatial extent of transport)
 - b) Megacity special collection (Los Angeles)

Megacity data

https://disc.gsfc.nasa.gov/datasets/ TRPSYL2ALLCRSMGLOS 1/summary? keywords=tropess%20megacity%20Los%20angeles

2) Ground in-situ (EPA)

Time series of satellite-based CO (2017) from megacity collection (Los Angeles)

Results – In-situ and satellite CO (Surface - 680 hPa) concentration in Los Angeles

- In-situ and satellite CO observation shows similar pattern
- During air pollution event, surface CO enhancement

Results – In-situ and satellite O₃ (Surface - 680 hPa) concentration in Los Angeles

The association between long-range transport and surface O₃ concentration is less clear for this event

Summary

- Introduce new Trace Gas Atmospheric River (TGAR) framework to examine the impact of long-range transport on local air quality.
- The CrIS satellite and ground-based in-situ measurements during an air pollution event (Feb 25, 2017) over Los Angeles
 - Reveal elevated CO levels
 - Suggesting that transport event has large impact on local air quality
- The impact of long-range transport on surface ozone during this air pollution event is less clear for this event.

Thank you

Backup slides – Spatial map and CO TGAR

CO TGAR 2017/Feb/24, 01:00:00

Backup slides – Averaging Kernel profiles

CO

 O_3

